
www.controleng.com ● CONTROL ENGINEERING JUNE 2015 ● M1

B
efore effectively producing a sup-
port-focused design that can effi-
ciently interact with control
applications, the designer must first
have a basic understanding of con-

trol application fundamentals. However, before
introducing control application fundamentals,
this section of the article focuses on the basics of
PLC programming. The material presented pro-
vides strategists with the rudimentary knowledge
needed to recognize:

1. Common programming instructions
2. Control application terms
3. Potential of machine controller programs
4. Hard-coded and hardwired logic circuits
5. Programming techniques that affect

circuit styles
6. Circuit substitution techniques.

It is often easier for computer programmers to
think of ladder logic programs as lists of Boolean
equations. Individual groups of equations make up
separate controller applications. The machine con-
troller constantly scans and evaluates each equa-
tion in each application.

If the examinable equation conditions are true,
the programmed output instruction acts to enable
or disable an internal signal, output signal, or
function variable. Each application shares a frac-
tion of each program scan. The net effect is equiv-
alent to parallel processing all resident machine
controller applications.

Circuits used to control the movement of a
mechanism or object can be a logic circuit, which
is a line of code that is part of a machine control-
ler application, or an external circuit, which is any
electric, pneumatic, optic, or hydraulic circuit that
reacts to a machine controller’s output signal to
move an object or mechanism.

External circuits are physical circuits, while
logic circuits are internal to a machine controller.
The “external circuit” term refers to the arrange-
ment of real-world devices that react to a con-
troller’s enabled output signal. Externally, output
signals are connection points on a controller’s out-
put module. External circuits use wires from out-

put connection points to enable relays, valves, and
switches to activate a hydraulic, pneumatic, optic,
and/or electric circuit. Logic circuits are lines of
code with examinable elements and programmable
resultants. Elements are discrete signals or applica-
tion variables.

Each logic circuit enables one or more resul-
tants. A resultant is typically an enabled or disabled
signal or a changeable register-stored value. It is
common to have logic circuits that unconditionally
enable resultants. Resultants for some logic circuits
are output signals, which when enabled will acti-
vate external circuits. Designers often place exam-
inable elements in series on a logic circuit to denote
AND conditions. Instead of parenthesis, program-
mers use branches with one or more parallel ele-
ments to denote OR conditions.

The following definitions describe some com-
monly used logic circuit programming terms:

� Bit: a machine controller’s smallest Bool-
ean variable having only two values, either
one (1) or zero (0)

� Word: a machine controller’s multi-bit
(16, 32, 64, etc.) register used to store the
contents of an application variable

� Instruction: a single, programmable oper-
ation used to examine, compare, enable,
disable, move, set, reset, or manipulate a
bit or word value

� Bit instruction: an operation used to
examine, enable, or disable a bit value

� Word instruction: an operation used to
compare, move, set, reset, or manipulate a
word value

� File instruction: an operation used to
compare, move, set, reset, or manipulate a
multi-word data array

� Special instruction: a unique programma-
ble operation designed to support a specific
application purpose.

Figure 1 shows some instruction symbols
and their associated bit, word, file, and special
instruction names. These common instructions
are compatible with most application variables.
Bit instructions represent examinable or change-
able discrete signals. These signals denote the

PLC Basics
PLC programs do not behave like scripted language programs used by most
computer applications. A basic understanding of control application fundamentals is
crucial for designing an effective support-focused system. Link to parts 1, 2, 3, online.

inside machines

Key
concepts
� The engineer must have
a basic understanding of
control application funda-
mentals.

� PLC operating systems
emphasize the continuous
and high-speed scanning
of all lines of code.

� Each machine controller
manufacturer is likely to
provide a programming
environment with differing
sets of instructions.

M2 ● JUNE 2015 CONTROL ENGINEERING ● www.controleng.com

state of an internal, input, and output variable.
An internal signal is a variable enabled by one

circuit and examinable by others. An input sig-
nal typically represents the enabled or disabled
state of a sensor, pushbutton, selector switch, or
device. An output signal generally represents the
activated or deactivated state of a light, external
relay, or solenoid valve. One-shot, time-on timer,
and retentive timer instructions are examples of
special programming instructions.

A one-shot instruction enables designers to
develop trigger circuits. A time-on timer instruc-
tion enables control applications to accumulate
time when rung conditions are true. Unlike the
time-on timer, a retentive timer holds the accumu-
lated time value when the instruction is disabled.
Word instructions are compatible with instructions
that compare or manipulate multi-bit instructions.

File instructions support manipulation of con-
tiguous groups of words. Most machine control-
ler instructions allow applications to examine
and manipulate variables associated with eight-
bit bytes, four-bit nibbles, and multi-bit applica-

tion variables. When
a precondition transi-
tions to a false state,
the machine control-
ler disables the signal
related to the output
instruction.

Relay coil and
latch/unlatch coil
instructions, when
used, produce five
types of circuits: 1)
Setup circuit: a logic
circuit that examines
one or more serial or

parallel conditions to enable the coil assigned
discrete signal; 2) Seal circuit: a setup circuit that
examines the rung’s relay coil assigned discrete
signal as a parallel condition around one or more
other conditions that are expected to change state
when the circuit is enabled; 3) Latch circuit: a
logic circuit that examines various serial and/
or parallel conditions before setting a signal; 4)
Unlatch circuit: a logic circuit design that exam-
ines various serial and/or parallel conditions
before resetting a signal; 5) Timer circuit: a logic
circuit that examines various serial and/or paral-
lel conditions before enabling a timer instruction.

Setup and seal circuits differ in two important
ways. Unlike a seal circuit, a setup circuit will
never include the rung’s coil signal as an examin-
able precondition. A seal circuit always includes
at least one condition needed to break the seal.
Designers sometimes refer to a setup circuit as
a summation circuit because it sums together

all the serial and parallel conditions needed to
enable the coil-assigned signal. Designers use a
setup circuit when they expect any conditions to
change state, and they want to keep the signal
enabled until one does.

For seal circuits, designers simply OR the con-
ditions they expect to change state with a normally
opened contact enabled by the coil-assigned signal.
Designers also add at least one other AND condi-
tion that must change its signal state or variable
value when it is time to disable the sealed signal.

Various timer circuit terms sometimes cause
confusion among control system designers. A cir-
cuit that uses a time-on instruction accumulates
an elapsed time value when the rung conditions
are true. When the circuit is false, the accumulat-
ed value automatically resets. Some designers use
math-based add or retentive timer instructions to
accumulate and hold elapsed time information.
These circuit designs need special word instruc-
tions that reset or clear retained time information.

Designers usually apply timer circuits to pro-
duce one of the following two signal condition-
ing circuits: 1) Dwell circuit: a timer circuit that
times the steady-state condition of a signal before
enabling another circuit to examine the signal;
2) De-bounce circuit: a timer circuit that times a
steady-state condition of a signal before it enables
another circuit to react to the signal’s new state.

Designers usually apply dwell and de-bounce
circuits to time the state of a sensor’s input sig-
nal. The difference in each timer circuit is what
each declares when an accumulated elapsed time
value is greater than a preset value. A dwell cir-
cuit declares the sensor input signal stabilized and
ready for use, whereas a de-bounce circuit declares
the sensor input signal qualified to change state for
the next sensed object or mechanism.

Each machine controller manufacturer is like-
ly to provide a programming environment that
is equipped with differing sets of instructions.
However, most environments use bit instructions,
while others force programmers to create special
add-on instructions (AOI) to manipulate word
data or enable complex algorithms.

Most controller manufacturers provide an
environment with a standard set of instructions
that allow programmers to enhance the ability of
simple relay applications. Programmers use relay
instructions to control the movements of objects
and mechanisms.

Programmers use bit instructions to enable
other internal and external processes. For the
most part, programmers use word and file
instructions to develop ancillary applications
that manipulate data. Shift-register, reader appli-
cations, get-next, and communication drivers are
examples of an ancillary application.

inside machines

Figure 1 shows some
instruction symbols and
their associated bit,
word, file, and special
instruction names. All
images courtesy: Daniel
Cardinal

Although latch-protected trigger cir-
cuit designs work for most programs,
they still can re-enable the trigger for
the same part. This happens when some-
one deliberately moves a mechanism to
unlatch the block signal. Depending on
the actual application, re-enabling the
trigger may not be desirable. If re-firing
the trigger does not cause any undesir-
able affects, these circuits do not create
application anomalies. If repeat trigger-
ing creates anomalies, designers often
leave applications to the chance some-
one will manually move the mechanism.

Figure 3 shows a reliable alternative to
a latch-protected trigger circuit. Without
the optional parallel branch, the base cir-
cuit does not allow the re-enabling of the
trigger. The circuit’s preconditions force
the design to rely on a movement detec-
tion trigger to re-enable the arming signal.

If it is desirable to repeat fire the trig-
ger, the programmer merely includes the
OR branch to provide an alternate way
to re-arm the trigger. The base circuit
design ensures the ancillary trigger will
only fire once per part.

Technical benefits to using instruc-
tion-based circuits over coil-blocked
circuits would have nothing to do with
decreasing the chaotic nature of con-
trol applications. The latch-protected
circuit provides some added false trig-
ger protection without using a one-shot
instruction. The movement-armed circuit
ensures the highest degree of reliability.

The instruction-based method pro-
vides programmers with a redundant
way to generate a coil-blocked trigger. It
is easy to conclude that the reaction by
machine controller manufacturers to add
a one-shot instruction to their suite of bit

level instructions increases the chance
designers will arbitrarily use them to
produce less reliable triggers. Their use
in control applications only increases the
chaotic nature of control applications.

Signal-less one-shot circuits do not
produce trigger signals that are examin-
able by other circuits. These circuits typ-
ically latch or unlatch a discrete signal.
Some circuits simply change or move
data when the preconditions are correct.

The lack of an examinable signal
makes it difficult for other designers,
support personnel, or controls integrators
to discover the trigger conditions used.
In most cases, signal-less one-shot cir-
cuits increase the probability that some-
one will create additional trigger circuits
to accommodate their own applications.
Their failure to reproduce the same cir-
cuit behavior guarantees the increased
chaotic nature of the application. ce

- Daniel B. Cardinal is sys-
tems engineer with InSyte Inc.;
edited by Joy Chang, digital proj-
ect manager, Control Engineering,
jchang@cfemedia.com.

inside machines

M4 ● JUNE 2015 CONTROL ENGINEERING ● www.controleng.com

Go online to read the full article and part 1-3
of the series.
PART 1: Support-focused enterprise controls
series
PART 2: Support-focused enterprise controls:
Object detection for automotive automation
PART 3: Support-focused enterprise controls:
Control system triggers

Go Online

Consider this...
Did controller manufacturers react to their
customers properly by providing programmers
with one-shot instructions?

Figure 3 shows an extremely reliable
alternative to a latch-protected trigger
circuit.

Figure 2: Designers usually apply dwell
and de-bounce circuits to time the state
of a sensor’s input signal.

Complete
Automation
Solutions for the
Process Industry

For more information:
Call: 1-800-Go-Festo
 1-800-463-3786

www.festo.us

Global manufacturer of process control
and factory automation solutions

Pilot Valves

Process Valves

Control Cabinets

input #26 at www.controleng.com/information

Copyright of Control Engineering is the property of CFE Media and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

